Magnetostrophic MRI in the Earth ’ s Outer Core
نویسنده
چکیده
We show that a simple, modified version of the Magnetorotational Instability (MRI) can develop in the outer liquid core of the Earth, in the presence of a background shear. It requires either thermal wind, or a primary instability, such as convection, to drive a weak differential rotation within the core. The force balance in the Earth’s core is very unlike classical astrophysical applications of the MRI (such as gaseous disks around stars). Here, the weak differential rotation in the Earth core yields an instability by its constructive interaction with the planet’s much larger rotation rate. The resulting destabilising mechanism is just strong enough to counteract stabilizing resistive effects, and produce growth on geophysically interesting timescales. We give a simple physical explanation of the instability, and show that it relies on a force balance appropriate to the Earth’s core, known as magnetostrophic balance.
منابع مشابه
Magnetostrophic balance as the optimal state for turbulent magnetoconvection.
The magnetic fields of Earth and other planets are generated by turbulent convection in the vast oceans of liquid metal within them. Although direct observation is not possible, this liquid metal circulation is thought to be dominated by the controlling influences of planetary rotation and magnetic fields through the Coriolis and Lorentz forces. Theory famously predicts that planetary dynamo sy...
متن کاملAn Overview of Cobalt Ferrite Core-Shell Nanoparticles for Magnetic Hyperthermia Applications
Cobalt ferrite nanoparticles (CoFe2O4) are well known for some distinctive characteristics such as high magnetic permeability and coercive force, good saturation magnetization, excellent physical, and chemical stability, which make them so attractive for magnetic storage, magnetic resonance imaging (MRI), drug delivery, optical-magnetic equipment, radar absorbing materials...
متن کاملنوسانات آزاد سیارات شبه زمین در حضور میدان مغناطیسی
we study the free oscillations of a non-rotating earth-like planet in the presence of a force free magnetic field. The model consists of a solid inner core, a liquid outer core and a solid mantle which is spherically symmetric. The lagrangian displacements are decomposed into scaloidal, poloidal and toroidal components using a gauged version of Helmholtz theorem. These components are identifi...
متن کاملA comparison of no-slip, stress-free and inviscid models of rapidly rotating fluid in a spherical shell.
We investigate how the choice of either no-slip or stress-free boundary conditions affects numerical models of rapidly rotating flow in Earth's core by computing solutions of the weakly-viscous magnetostrophic equations within a spherical shell, driven by a prescribed body force. For non-axisymmetric solutions, we show that models with either choice of boundary condition have thin boundary laye...
متن کاملFrequency Aanalysis of Annular Plates Having a Small Core and Guided Edges at Both Inner and Outer Boundaries
This paper deals with frequency analysis of annular plates having a small core and guided edges at both inner and outer boundaries. Using classical plate theory the governing differential equation of motion for the annular plate having a small core is derived and solved for the case of plate being guided at inner and outer edge boundaries. The fundamental frequencies for the first six modes of ...
متن کامل